

California Background Overview

- Extensive geologic formations with NOA
- Former commercial mine sites.
- Industrial sites with buried debris containing asbestos and asbestos in soils
- Demolition of buildings and asbestos product releases, eg. Brake linings.
- · Background concentrations in air and soil needed

Asbestos Sources in California

- Maps show Ultramafic areas
- Also finding NOA in Mafic areas
- Roads surfaced with serpentine
- Fill materials including decomposed granite
- Alluvial washouts from NOA areas (eg. Arroyo Pasajero)

Asbestos in California Soils

- NOA found in 45 of 58 counties, including the San Francisco Bay area.
- 1.4 % of the state's surface area is in the mapped NOA area
- Miles of unpaved roads covered with serpentine
- Extent of fill material contaminated with asbestos debris is unknown

California Background Mineral Forms of Asbestos

- All of the 6 forms defined in regulation including:
 - Chrysotile
 - Tremolite
 - Actinolite
 - Amosite
 - Crocidolite
 - Anthophyllite
- Transition fibers
- Cleavage fragments

Regulatory Frame Work

- California Air Resources Board develops regulations that Local Agencies implement
- Recent regulations govern asbestos content in surfacing material
 - Non detect based on CARB 435 Method with PLM Detection Limit of 0.25 % (400 point count)
- Another requires dust suppression and possible asbestos air monitoring for all construction

Regulatory Frame Work

- Department of Toxic Substances Control
- Oversee cleanup of hazardous substances release sites
- Environmental appraisal of new school sites
- Regulate Hazardous Waste Disposal
- NOA is a hazardous substance if released to the environment
- Soils Excavation projects are Bevell Exempt

Garden Valley Source Study

- 1998 and 1999 air monitoring detected elevated levels of asbestos in ambient air
- DTSC, funded by USEPA, conducted a study to identify potential sources within a 16 mile study area
- Possible sources included an Active Quarry, Inactive quarry, unpaved roads surfaced with serpentine aggregate

Ecology and Environment, Inc.

Figure 1

Regional Setting El Dorado Site Discovery

El Dorado County, California

Dr. No: 09.0530.EDSF.XX.b TDD: 09-0003-0004 PAN: 0530-EDSF-XX Date: 12/12/2000 File: Z.54

Garden Valley Site Discovery Area Map of Unpaved Roads

Serpentine Covered Roads and Road Cuts

School Bus Stops

Garden Valley Site Discovery Area Map of Quarry Locations and Sample Numbers

Two Serpentine Rock Quarries

Bear Creek Quarry

Garden Valley Aggregates

ACTIVITIES BY EXPOSURE PATHWAY – SOIL Sampling

Methods Used
Surface scrapes of 1 to 2 inches
One quart
Silt to cobble size

Number of Samples: 137 samples collected

Roads: 52 samples/17 size fractionated

Bus Stops: 13/8

Quarries: 64/15

Road Cut: 8/2

SOIL Sample Preparation ALS CHEMEX

- Soil Moisture determined
- 42 samples were size fractionated by 200 mesh sieve to <75 um and >than 75um
- The greater than 75 fraction and total samples were then prepared following CARB 435 method preparation.

RJ LEE Analysis

- Analyzed using CARB 435 PLM method
- Results expressed as percentage of 400 points counted and identified by <5um and >5um
- Counted fibers identified by asbestos type

Forensic Analytical

- 100 samples analyzed using USEPA 600/R-93/116 TEM method
- 18 samples analyzed by CARB 435 PLM as QA/QC check
- 6 samples analyzed by XRD

Soils Analysis Results

- Results from both labs significantly lower than samples collected in the 1980's by USEPA
- Discrepancies between PLM and TEM data and between labs
- XRD identified Lizardite and Chrysotile with extensive cleavage fragments

EMSL Analysis

- To resolve analytical questions, samples were sent to a third lab for analysis
- All samples analyzed using both CARB 435 and USEPA 600/R- TEM
- These results were used for report conclusions and recommendations

Garden Valley: Ambient Air Sampling

- Stationary samplers with Met stations
 24 hour runs
- Location and Number of Samples
 - Four community locations 17 days in 1998, 1999 and 2000
 - background 17 days in 1998, 1999 and 2000
 - Quarries 5 days in October 2000

Air Monitoring Results

- Similar to previous sample results
- All data
 combined to
 update risk
 assessment 10⁻⁵
- Quarry results similar to those in the community

Report Conclusions

- All sources had comparable levels of asbestos
- Chrysotile is the primary form of asbestos found
- Asbestos levels in the 75 micron sieved fractions are slightly higher than the larger size fraction
- Primary source is likely the unpaved roads
- Recommended road emission study

Analysis Issues

- Laboratory analyses were inconsistent with expectations
- TEM counts lower than PLM
- Possible inconsistencies in lab prep methods
- Data not reproducible among labs.

Road Emission Study

- Conducted on Slodusty Road in July 2002
- Experimental design: Stationary monitors placed at distances from road way
- Ran for duration of specific road test
- Ran 2 tests daily

Slodusty Road

Analysis Issues

- EMSL used ISO 10312
- QA/QC samples sent to Resource ???...
- Significant difference in counts due to transition fibers
- Took nearly 8 hours to do one sample using ISO
- Used AHERA TEM method with stopping rules

Resurfacing Project

- Resurfaced Slodusty Road
- Chip Seal with Limestone Aggregate Base and oil Emulsion Covered by Limestone Chips

Slodusty Road

Emission Study Phase II

- August 2003
- Repeated road emission study after road resurfacing completed
- Two runs
- Results pending

Air Sampling Problems

- Filter overloading during emission studies
- Wind Direction and Velocity Change
- Temperature and Humidity effects

Air Analysis Issues

- Detection limits
- Counting rules
- Transition fibers
- Fractured lizardite that looks like fibers
- Chemistry of lizardite, chrysotile is same

Low Volume Personal Sample Pumps

- Low volume personal sample pumps used during both Emissions studies
- Workers were not down wind during emission studies
- Filters analyzed using PCM for OSHA requirements and TEM AHERA method
- Results OSHA levels were not exceeded

Slodusty Road Bulk Samples

- 25 surface scrape samples collected from road bed
- Individual samples analyzed using USEPA 600/R-93/116 TEM
- Split samples: 25 composited to 5 for Berman Crump Elutriator analysis
- Results pending

Site Background Oakridge High School

- Oakridge High School, El Dorado Hills
- 1600 students
- Middle of a rapidly developing area
- NOA deposits on and next to high school

- School began construction of two new soccer fields in 2002
- No regulatory oversight required at the time.
- Cut/fill from slope adjacent to school.
- No cover, drainage or erosion control measures while construction was idle
- Visible veins of asbestos in cut slope, confirmed by sampling and analysis to be tremolite

- Mitigation Phase I started June, 2003
- Cover soccer field with geo fabric, two feet of clean fill and sod
- Shot-crete upper slopes, vegetate lower slopes and restrict access
- Cover exposed areas of school with fill material and landscape/planter boxes or paving.

- Air monitoring during mitigation work
- Pre sampling to establish reference concentrations
- Sample during all mitigation work on soccer fields
- Workers wear low volume personal air pumps

Air Monitor Locations

Map showing air monitoring locations

Sample analysis:

- Ambient stations use AHERA method with sensitivity of 0.0005 s/cc
- Laboratory passed USEPA Performance Sample assessment
- Personal monitors analyzed by PCM for OSHA compliance and by TEM

- Air monitoring results provided as handout
- Outdoors: Pre work results had some elevated results
- During mitigation, average results near detection limits.

- Out door assessment: Phase II
- Track/football field
- Basketball courts
- Tennis Courts
- Baseball and softball diamonds

- Activity assessment with stationary monitors
- Track surface is decomposed granite
- Tested by dragging box over track surface to "prep" field for an event.
- Soil samples of decomposed granite collected

TRACK Photo

Basketball Photo

Baseball Photo

- Tennis Courts and Basketball courts were swept
- Baseball diamond infield was tested dragging box around infield to prep surface
- Stationary air monitoring stations with Met Station
- Low volume personal sampler pumps on workers

- Class room monitoring with modified aggressive World Trade Center protocols used to clear apartments
- Classrooms cleaned using WTC protocol

- Air monitoring results
- Limited classroom problems with exception of former storage room
- Mitigation monitoring showed construction techniques and dust suppression effective
- Activity assessment showed low levels of asbestos in soil can yield significant air emissions

- Soil sampling results
- Track decomposed granite sampled with results ranging from 0.001 to 0.02% actinolite by weight
- Imported fill sampled from four possible sources:
 3 of the 4 had asbestos detected at >0.01% by weight

Promontory School

- Located in Mafic geologic area
- Outside CGS mapped Ultramafic areas
- No visible outcrops, just soils
- On own initiative school collected samples from various locations
- Analyzed by PLM and TEM
- Asbestos, tremolite, detected at .25 %

Promontory School

- School District prepared a RAW under DTSC oversight
- Mitigate areas by dust suppression and monitoring during construction
- All exposed areas will be covered with hardscape or clean fill and landscaping
- O&M plan and Institutional Controls

Union Pacific Rail Yard, Sacramento

- Hub of Southern Pacific Operations since 1863.
- Closed down by end of 1999 except for minor activities.
- 240 acres of prime real estate in the heart of downtown Sacramento
- What will it be?

Union Pacific Rail Yard, Sacramento

- COCs: Every industrial and commercial chemical possible, including asbestos
- Near soils excavation near foundary, found "chunks of fabric like material" mixed in with soil.
- Analysis showed asbestos.
- · Found scattered in other areas of the rail yard

Union Pacific Rail Yard, Sacramento

- Developed plan to assess asbestos in soil
- Developed plan for dealing with soil containing asbestos needing treatment
- Developed plan to minimize releases to air and conduct air monitoring.
- Site will be deed restricted to preclude sensitive uses without additional controls

Union Pacific Rail Yard Curtis Park

- 60 acre former railyard
- Asbestos debris from engine boilers, pipe wrapings etc. Removed in early 1990's as IRM.
 RAP for area based on commercial and industrial usage called for cleanup to 1%.
- Redevelopment plans being developed with mostly unrestricted use over the site.
- Question: Safe residual level to leave in soil? Unrestricted, Restricted

What Is Needed: Soils

- Sampling methodology for assessing sites with potential NOA or asbestos debris
- Sample depth selection protocol
- Guidance for spatial distribution for sampling
- Fill material assessment protocol
- How many samples to get statistical significant characterization

What Is Needed: Testing

- Uniform test methodology and sample preparation method designed specifically for NOA
- Uniform counting rules
- Low cost test procedure
- Consistent testing methodology
- Reliable and reproducible testing method
- Quick laboratory turn-a-round time
- Sensitivity to match exposure and risk assessment needs

What Is Needed: Soil Sample Preparation

- How should sample be prepared to reflect asbestos concentrations that pose a current and future risk?
- Respirable now? In the future?
- Transfer to filters or other media for assessment
- Soil to air concentration assessment (eg. Berman/Crump method)

What Is Needed: Soils Analysis

- Method protocols for environmental sample analysis
- Sensitivity
- Counting Rules
- Reporting: <5, >5, >10, other
- How to report "complex" structures or bundles
- Should Transition Fibers be counted
- Should Cleavage fragments be counted

What Is Needed: QA/QC

- Methods to assess reproducibility of data reports between different analysts within a lab
- Among other labs
- Performance Evaluation samples and protocols for Soils

What Is Needed: Exposure Assessment

- Activity/ exposure testing
- Activity scenarios including duration and frequency
- Protocol for incorporating the scenarios into a specific site risk assessment
- Assessment of other non-regulated forms of fibrous minerals

What Is Needed: Risk Management

- Background studies on soils and ambient air concentrations
- Risk Assessment Process Linked to Health Effects from Non-occupational Exposures
- Protocols for Determining Action Levels for Soil Based on Sampling

